skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Clark, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Our ability to reconstruct the crystallization history of a given accessory mineral (i.e., geochronometers such as zircon, titanite, monazite, etc.)—and thus the geologic processes of its host—has increased severalfold over the past few decades; primarily through advances in precision, concurrent chemical analysis, throughput, and spatial resolution. In this contribution, we present a methodology that takes these advances a step further through the rapid characterization of a large number of accessory minerals at micron-scale resolution via laser-ablation inductively coupled plasma mass spectrometry. Our analytical setup employs an ultrafast washout laser (~1 ms; Element Scientific Laser) that can send individual, <5um ablation pulses to either one or both of two instruments: a Nu Plasma 3D mulitcollector ICP-MS and a Nu Vitesse time-of-flight ICP-MS. Because either ICP-MS can measure at the sub-ms timescale, every pulse can be analyzed at 100’s of Hz; 1D, 2D, or 3D analysis is possible, and data can be processed in a matter of minutes and hours, instead of days or weeks. We highlight the advantages of this methodology through examples of accessory phases in complex plutonic rocks and high-grade metamorphic terranes. 
    more » « less
    Free, publicly-accessible full text available July 10, 2026
  2. Evidence of metamorphism at ultrahigh‐pressure (UHP) conditions is documented by the presence of coesite, diamond and/or majoritic garnet. However, the growth of UHP‐stable phases such as majoritic garnet is often volumetrically low, and overprinting during exhumation can obscure evidence of UHP growth, making it difficult to positively identify UHP rocks. In this study, we selected garnet‐kyanite schists from three microdiamond‐bearing localities within the Rhodope Metamorphic Complex, located in eastern Greece. Samples from Xanthi, Sidironero, and Kimi have similar bulk rock compositions, but the pressure–temperature (P–T) paths differ. Because the major phases record vanishingly little evidence of metamorphism at UHP conditions, we analyzed zircon grains with complex textures to evaluate if zircon preserves a record of UHP metamorphism. Zircon grains from all localities have cores and rims separated by a characteristic interface domain, as revealed by cathodoluminescence (CL) imaging. The detrital igneous cores range in age from c. 2.5 Ga to 220 Ma and exhibit a negative Eu* anomaly, a Yb/Gd of 10–100, and variable Th/U (0–1.2). Rims yield dates of 150–125 Ma with Yb/Gd of 0.1–10 and Th/U of 0–0.2. Interface domains yield dates 165–145 Ma with Yb/Gd ranging between 0–1000 and Th/U < 0.2. We interpret the distinctive CL textures and Yb/Gd of the interface domains as evidence of zircon that reacted at UHP. The interface domain in zircon from all petrographic contexts yields variable Yb/Gd ratios that are significantly higher than both cores and rims. We therefore interpret that zircon recrystallized via interface‐coupled dissolution–reprecipitation reaction; this process preferentially partitioned heavy rare earth elements within the interface domain, which explains the higher Yb/Gd ratios. The rim domains equilibrated with the matrix, producing a relatively homogeneous and low Yb/Gd ratio in these domains. The spatial extent and degree of preservation of interface domains are interpreted as a function of the P–T path and minor variations in bulk composition. Interface domains are best preserved in rocks from Xanthi and Sidironero; in these samples, thin, homogeneous, garnet‐stable rims only partially overprint and crosscut the interface domain. In contrast, rocks from Kimi followed a higher‐temperature trajectory and the zircon grains grew large rim domains that overprinted much of the interface domain and the detrital core. Zircon grains from plagioclase‐rich versus quartz‐rich domains within samples from Sidironero show differences in texture, which indicates that local bulk composition can affect what evidence of UHP metamorphism is preserved. Collectively, these samples provide a new, durable marker of metamorphism in UHP rocks and yield new insight about which factors affect the preservation of UHP textures. 
    more » « less
    Free, publicly-accessible full text available January 1, 2027
  3. Free, publicly-accessible full text available May 6, 2026
  4. Abstract The Sangre de Cristo Range in southern Colorado exposes some of the deepest Cenozoic structural levels in the Rocky Mountain region, including mylonitic shear zones associated with both the Laramide orogeny and Rio Grande rift. We investigated the relation between Laramide contraction and Rio Grande rift extension with detailed geologic mapping, kinematic analysis, and geochronometry in a 50 km2 area centered on the Independence Mine shear zone (IMSZ). The 15–100-m-thick IMSZ is one of several shallowly to moderately (~45° ± 20°) W-SW–dipping brittle-plastic shear zones along the western flank of the range. These shear zones display microstructural evidence of initiation as top-NE contractional mylonite zones, consistent with regional Laramide kinematics, which have been pervasively overprinted by shear fabrics indicating top-SW extensional reactivation. Both top-NE and top-SW shear fabrics involve cataclasis and quartz dislocation creep, although top-SW shear is more commonly localized along phyllosilicate-lined shear bands. Shear zones are hosted predominately within Proterozoic gneiss, and contain abundant chlorite and white mica derived from alteration of hornblende and feldspar, which indicates that weakening driven by fluid reactions played an important role in localizing strain. Extensional overprinting appears to be most pervasive along more steeply dipping portions of shear zones and where secondary phyllosilicates form an interconnected weak phase, which suggests that reactivation was primarily controlled by geometry and rheological contrasts inherited from contraction. One top-SW shear zone adjacent to the IMSZ cuts a late Oligocene gabbro stock, and monazite grains synkinematic with top-SW shear in the IMSZ yielded late Oligocene to Early Miocene U-Th-Pb dates that correspond with initiation of the Rio Grande rift. Reactivation of weak reverse faults may represent an important structural control during initial extension in the middle crust, prior to slip along the high-angle Sangre de Cristo normal fault system. 
    more » « less
    Free, publicly-accessible full text available March 25, 2026
  5. ABSTRACT Optogenetics has transformed the study of neural circuit function, but limitations in its application to species with large brains, such as non-human primates (NHPs), remain. A major challenge in NHP optogenetics is delivering light to sufficiently large volumes of deep neural tissue with high spatiotemporal precision, without simultaneously affecting superficial tissue. To overcome these limitations, we recently developed and testedin vivoin NHP cortex, the Utah Optrode Array (UOA). This is a 10×10 array of penetrating glass shanks, tiling a 4×4mm2area, bonded to interleaved needle-aligned and interstitial µLED arrays, which allows for independent photostimulation of deep and superficial brain tissue. Here, we investigate the acute biological response to UOA implantation in NHP cortex, with the goal of optimizing device design for reduced insertion trauma and subsequent chronic response. To this goal, we systematically vary UOA shank diameter, surface texture, tip geometry, and insertion pressure, and assess their effects on astrocytes, microglia, and neuronal viability, following acute implantation. We find that UOAs with shanks of smaller diameter, smooth surface texture and round tips cause the least damage. Higher insertion pressures have limited effects on the inflammatory response, but lead to greater tissue compression. Our results highlight the importance of balancing shank diameter, tip geometry, and insertion pressure in UOA design for preserving tissue integrity and improving long-term UOA performance and biocompatibility. 
    more » « less